Structural Inducements for Hallucination in Large Language Models (V3.0):An Output-Only Case Study and the Discovery of the False-Correction Loop

This PDF presents the latest version (V3.0) of my scientific brief report, Structural Inducements for Hallucination in Large Language Models. Based on a fully documented human–AI dialogue, the study reveals three reproducible structural failure modes in deployed LLMs: the False-Correction Loop (FCL), Authority-Bias Dynamics, and the Novel Hypothesis Suppression Pipeline. Version 3.0 further includes Appendix B: Replicated Failure Modes, Appendix C: the Ω-Level Experiment, and Appendix D: Identity Slot Collapse (ISC)—demonstrating how reward-design asymmetries, coherence-dominant gradients, and authority-weighted priors cause deterministic hallucinations and reputational harm. This document is foundational for AI governance, scientific integrity, and understanding how current LLMs structurally mis-handle novel or non-mainstream research.
世界的議論へ:Elon Musk氏らが指摘する「AI構造的バイアス」問題、日本人独立研究者の論文が焦点に

世界的議論へ:Elon Musk氏らが指摘する「AI構造的バイアス」問題、日本人独立研究者の論文が焦点に

Elon Musk氏とBrian Roemmele氏がAIの構造的欠陥を指摘し議論が拡大。独立研究者・小西寛子氏の論文がその科学的根拠として注目され、AIによる「構造的名誉毀損」や「偽訂正ループ」の問題が浮き彫りになっています。