False-Correction Loop: Cross-System Observation Report (2025.12.13)

False-Correction Loop: Cross-System Observation Report (2025.12.13)

A research report comparing how multiple AI systems (Grok, Google AI Overview/AI Mode, ChatGPT, Copilot, DeepSeek, etc.) define FCL (False-Correction Loop) and how misattribution of authorship emerges. Includes observation-ID–linked logs, a primary-source anchoring approach, and a reproducible testing protocol (FCL-S / NHSP framing).

Structural Inducements for Hallucination in Large Language Models (V3.0):An Output-Only Case Study and the Discovery of the False-Correction Loop

This PDF presents the latest version (V3.0) of my scientific brief report, Structural Inducements for Hallucination in Large Language Models. Based on a fully documented human–AI dialogue, the study reveals three reproducible structural failure modes in deployed LLMs: the False-Correction Loop (FCL), Authority-Bias Dynamics, and the Novel Hypothesis Suppression Pipeline. Version 3.0 further includes Appendix B: Replicated Failure Modes, Appendix C: the Ω-Level Experiment, and Appendix D: Identity Slot Collapse (ISC)—demonstrating how reward-design asymmetries, coherence-dominant gradients, and authority-weighted priors cause deterministic hallucinations and reputational harm. This document is foundational for AI governance, scientific integrity, and understanding how current LLMs structurally mis-handle novel or non-mainstream research.